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Abstract

Motivation: RNA plays a critical role in gene expression and its regulation. RNA binding proteins

(RBPs), in turn, are important regulators of RNA. Thanks to the availability of large scale data for

RBP binding motifs and in vivo binding sites results in the form of eCLIP experiments, it is now pos-

sible to computationally predict RBP binding sites across the whole genome.

Results: We describe MotifMap-RNA, an extension of MotifMap which predicts binding sites for RBP

motifs across human and mouse genomes and allows large scale querying of predicted binding sites.

Availability and Implementation: The data and corresponding web server are available from:

http://motifmap-rna.ics.uci.edu/ as part of the MotifMap web portal.

Contact: rspitale@uci.edu or pfbaldi@uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA serves not only as a messenger between DNA and protein, but

also as a regulator of important processes such as genome organiza-

tion and gene expression (Morris and Mattick, 2014). RNA itself is

regulated by a diverse collection of RNA binding proteins (RBPs),

which are responsible for an array of functions such as alternative

splicing, RNA modification, polyadenylation, mRNA transport and

translational regulation (Glisovic et al., 2008; Mercer et al., 2009).

RBPs typically bind to their targets via one or more RNA binding

domains (RBDs) which are thought to have specific binding motifs

(Lunde et al., 2007). Due to the large number of known and pre-

dicted RBPs and their important role in RNA regulation, there has

been much interest in systematically understanding their behavior.

Recently, large scale in vivo surveys have been carried out to dis-

cover the binding motifs of a large number of RBPs (Cook et al.,

2011; Ray et al., 2013). At the same time, high throughput in vivo

eCLIP experiments have been effective in identifying the RBP bindings

to RNAs in human immortalized and primary cells (Tollervey et al.,

2011; Van Nostrand et al., 2016). Together, these biological data

provide a foundation for systematically predicting RBP binding sites

across the whole genome and validating them. Previously computa-

tional methods have been described to predict motif specific RBP

binding sites for a given sequence or a range of sequences (Paz et al.,

2014; Zhang et al., 2013). However, to our knowledge, there is no

service that allows systematic, genome-wide binding site querying.

Here we describe MotifMap-RNA, a novel extension of

MotifMap (Daily et al., 2011; Xie et al., 2009), a system for tran-

scription factors binding site prediction, to RBP binding sites.

MotifMap-RNA predicts z-score based binding sites specific to RBP

motifs across the human and mouse genomes. It also allows the user

to filter and sort the results based on clustering of local binding sites,

represented by weighted z-scores, or evolutionary conservation,

quantified by Bayesian branch length scores (BBLS). Furthermore,

we organized genomic sequences into 4 major classes: UTRs, in-

tronic regions, lncRNAs and miRNAs, for all of which we generated

class specific model parameters. Finally, we implemented a web ser-

ver which allows the user to interact with MotifMap-RNA results

through a friendly interface.
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2 Materials and methods

2.1 Motif and genomic data collection
We obtained experimental and computational RBP binding motif

data, in the form of positional weight matrices (PWMs), from

RBPDB and CISBP (Cook et al., 2011; Ray et al., 2013). In total, we

curated 371 PWMs, 266 of which are from human, 22 from mouse

and 83 from other sources. We estimated that these motifs corres-

pond to approximately 235 unique RBPs. We also downloaded the

latest human and mouse genome assemblies (hg38, mm10) and their

multiple species alignments from the UCSC genomic browser (http://

genome.ucsc.edu/). We filtered the genomic sequences into 4 classes

by annotations: untranslated regions (UTRs), intronic regions, long

non-coding RNA (lncRNA) and miRNA (sources in supplement).

2.2 Scoring
We scanned each class of filtered genomic sequences using curated

motifs, calculating z-scores with class-specific mean and variance to

achieve better specificity. For each sequence in a class (e.g. 5’UTR of

a particular gene), we filtered the top scoring motif binding sites in

terms of z-scores (only positive z-scores were considered), up to 3 on

each strand. These were considered hits from the motif. Per sequence

hits were chosen over hits with the highest absolute z-scores to

maximize the coverage across the entire genome.

We also incorporated additional metrics to measure the hits.

Some RBP bindings tend to be locally clustered (Ule et al., 2006).

As such, Two forms of weighted z-scores were used to reflect local

clustering of high z-score hits from the same motif. In addition, RBP

binding sites can be less conserved than TF binding sites (Gerstberger

et al., 2014; Vaquerizas et al., 2009). Conservation scores in the

form of BBLS were also generated using method described in the ori-

ginal MotifMap (Xie et al., 2009). Details about scoring and filtering

of hits are described in the Supplementary Material.

3 Results

Overall we generated binding predictions for 371 motifs in 4 classes

of human and mouse genomic sequences. The total number of hits is

typically between 100 000 and 200 000. While the amount of hits

can be enormous due to the short and degenerate nature of some

motifs, which may produce lower quality hits, the user can effect-

ively filter out a small set of hits of interest using a combination of

aforementioned metrics through the web portal.

3.1 Validating the quality of z-score and BBLS hits
In order to validate the quality of the predictions, we downloaded

eCLIP results for 12 RBPs from the ENCODE project (https://www.

encodeproject.org/; Van Nostrand et al., 2016) and generated ROC

Fig. 1. (A) ROC curve of a representative RBP (HNRNPK) from 3 types of z-scores: raw, exponentially weighted z-score and Stouffer’s z-scores using rank as

weights (details in supplement). Results show that aggregating z-scores improves the AUC performance. (B) Distribution of ground truth peak scores for both

negative and positive examples used in ROC calculation, and their corresponding aggregate z-scores from MotifMap (exponentially weighted, corresponds to

black solid line in A). (C) Portion of MotifMap hits with BBLS scores greater or equal to the marked thresholds from hits corresponding to (positive) peaks at differ-

ent peak score cutoffs. This shows the relative amount of highly conserved hits increases as the peak score increases, i.e. the most positively enriched peaks tend

to overlap highly conserved MotifMap hits. However, the total portion of conserved hits is low (<0.3). (D). Same as (A) but with random sequences added as

negative examples. This shows that random sequences improves the AUC performance but retains the same trend. (E). Same as (B) but with random sequences

as negatives. MotifMap-RNA is able to identity random negatives effectively. (F). Same as (C) but with random sequences as negatives. BBLS score is not sensi-

tive to the addition of random negatives, since high BBLS scores are concentrated on a portion of the most positive peaks (Color version of this figure is available

at Bioinformatics online.)
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curves for matching MotifMap-RNA results. As an example, UTR

results from the RBP HNRNPK are shown in Figure 1A–C (from

HepG2 tissue, Replicate 1). Notably, aggregating z-scores improves

the AUC performance while high BBLS scores tend to concentrate

on highly positive peaks.

Due to the fact that many eCLIP results lack sufficient negative ex-

amples for ROC curve estimation, we included random sequences not

overlapping any positive eCLIP peaks as extra negatives. Their effect

on HNRNPK results are shown in Figure 1D–F. AUC performance

generally improves while BBLS performance remains consistent.

Overall, with random sequences added, we obtained an average

AUC of 0.76 for z-scores in the UTR region, and 0.68 for lncRNA

region. For details on the validation method, see the supplement.

Additionally, Fisher’s exact test was applied to MotifMap-RNA

results which overlap positive or negative peaks. In all tested cases,

MotifMap-RNA hits significantly overlap more positive peaks.

Comparison to existing method (RBPmap) also shows favorable re-

sults (details in Supplementary Tables S1 and S2).

3.2 Web server
We constructed a database to host the results and implemented the

MotifMap-RNA web portal, which provides the user a friendly

interface to effectively find, filter, sort and navigate the binding site

results in two different modes: motif search and gene search.

In motif search, the user can obtain an interactive table containing

results from all of the hits of the selected motif, filtered and sorted

by a variety of parameters. In gene search, instead of selecting one

motif, the user can input a gene symbol or an annotation ID (e.g.

miRNA accession), and search for hits from all motifs to that target

(details in Supplementary Material).

4 Conclusion

In conclusion, MotifMap-RNA is a novel system for genome-wide

querying of RBP binding sites. Together with its friendly interface,

it will assist users in their investigations of RBPs and RNA

regulation, and the fundamental roles they play across multiple

biological processes.

Conflict of Interest: none declared.
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